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ABSTRACT

Graphical User Interfaces (GUIs) are critical to human-computer interaction, yet
automating GUI tasks remains challenging due to the complexity and variability
of visual environments. Existing approaches often rely on textual representations
of GUIs, which introduce limitations in generalization, efficiency, and scalability.
In this paper, we introduce AGUVIS, a unified pure vision-based framework for au-
tonomous GUI agents that operates across various platforms. Our approach lever-
ages image-based observations, and grounding instructions in natural language to
visual elements, and employs a consistent action space to ensure cross-platform
generalization. To address the limitations of previous work, we integrate explicit
planning and reasoning within the model, enhancing its ability to autonomously
navigate and interact with complex digital environments. We construct a large-
scale dataset of GUI agent trajectories, incorporating multimodal reasoning and
grounding, and employ a two-stage training pipeline that first focuses on general
GUI grounding, followed by planning and reasoning. Through comprehensive ex-
periments, we demonstrate that AGUVIS surpasses previous state-of-the-art meth-
ods in both offline and real-world online scenarios, achieving, to our knowledge,
the first fully autonomous pure vision GUI agent capable of performing tasks in-
dependently without collaboration with external closed-source models. We will
open-source all datasets, models, and training recipes to facilitate future research.

1 INTRODUCTION

Graphical User Interfaces (GUIs) are a cornerstone of human-computer interaction, providing a
structured yet intuitive platform for users to accomplish tasks across various digital environments:
website, desktop, and mobile devices (Deng et al., 2023; Zhou et al., 2024; Xie et al., 2024; Rawles
et al., 2024b). Automating GUI operations through autonomous agents can revolutionize productiv-
ity by enabling seamless task execution on various applications using existing human-centric tools.
Moreover, this approach lays the groundwork for advanced AI systems that can interact with and
learn from rich digital environments in ways that mirror human behavior.

To effectively perform GUI tasks autonomously, a GUI agent requires three core competencies: un-
derstanding, grounding, and planning & reasoning. For GUI understanding, the agent must first
comprehend high-resolution and complex interfaces designed for human users, enabling it to grasp
the context and perform subsequent reasoning tasks. GUI grounding involves mapping natural lan-
guage instructions to visual observations of the interface. For planning and reasoning, the agent must
synthesize and analyze the current multimodal observations of the environment with previous ob-
servations and action histories, enabling it to generate coherent and effective next steps to ultimately
achieve the task goal. Although recent advances in large vision-language models (LVLMs) (OpenAI,
2024; Reid et al., 2024; Li et al., 2024a; Wang et al., 2024a) have significantly enhanced the ability
of AI systems to interpret complex visual interfaces, there remain critical challenges in grounding
and reasoning specifically tailored for GUI tasks. We identify three primary challenges that must be
addressed to advance the capabilities of GUI agents:

Enhancing Pure Vision Framework. Previous approaches (Gur et al., 2024; Kim et al., 2023; Deng
et al., 2023; Zhou et al., 2024; Xie et al., 2024) predominantly focus on mapping natural language
instructions to textual representations of GUIs, such as HTML or accessibility trees. This method
presents several limitations. Firstly, GUIs are inherently visual, and leveraging image-based repre-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

sentations aligns more closely with human cognitive processes. Secondly, textual representations
can vary widely across different environments, complicating the generalization of the model and
limiting the availability of consistent training data. Finally, these textual representations are often
verbose and complex, leading to increased inference times compared to more compact image en-
codings (Figure 2). By unifying observations across platforms as images and grounding instructions
to image coordinates, GUI agents can generalize more effectively across diverse environments.

Unification Across GUI Environments. The action spaces and control APIs for GUI interactions
vary significantly across diverse environments, particularly when the observations are textual. Even
within the same platform, the action space can differ greatly. This heterogeneity limits the amount
of training data available for each environment, impeding the development of a model that can gen-
eralize effectively across different platforms and scale further. A unified action space that abstracts
these environmental differences is crucial for creating robust and adaptable GUI agents. Previous
work (Chen et al., 2024b; Zeng et al., 2024) has attempted to unify digital agent data across diverse
environments, such as combining GUI, game, and CLI interfaces for joint training. However, these
interfaces do not share the same interaction logic. In contrast, GUIs on desktop, web, and mobile
platforms naturally share similar human-computer interaction (HCI) logic. This commonality fa-
cilitates their unification, enabling consistent visual observations and action spaces that mutually
benefit both visual grounding and reasoning.

Integrating Planning and Reasoning with Grounding. Current methodologies (Zheng et al.,
2024a) often depend on the reasoning capabilities of closed-source large language models
(LLMs) (OpenAI, 2024) to plan the completion of GUI tasks or, alternatively, train agents to make
direct action decisions through grounding without an explicit reasoning process. This dichotomy re-
sults in either a lack of grounding abilities or a lack of comprehensive reasoning abilities. Recently,
some works (Gou et al., 2024; Lu et al., 2024) attempt to use closed-source LLMs with specialized
GUI grounding models together and communicate with natural language instruction to utilize both
abilities. However, on the one hand, natural language communication between the two models usu-
ally results in information loss. On the other hand, most importantly, this approach is not further
scalable to solve GUI interaction since grounding has been improved close to the upper bound with
data synthesis, and most remaining problems are planning related. However, the GUI planning and
reasoning ability of closed-source LLMs cannot be further improved.

To address these challenges, we introduce a unified framework for GUI agents that harmonizes pure
vision observation and consistent action spaces across diverse environments. Our approach lever-
ages vision-based grounding to improve generalization and reduce inference costs while employing
a standardized action space with a plugin system to facilitate consistent learning and interaction
across various platforms. After a unified GUI grounding training stage, we demonstrate that unified
augmented datasets can effectively build a model capable of executing complex GUI grounding in-
structions on various platforms. In addition, we integrate explicit visual planning and reasoning into
the same model, enabling autonomous navigation and interaction within complex digital environ-
ments. Since existing GUI agent trajectories do not fully support these demands, we have unified the
existing planning datasets on different platforms and constructed a large-scale, pure vision, cross-
platform, multi-step dataset of agent trajectories, featuring comprehensive multimodal reasoning
and grounding. Through extensive experiments across various scenarios, we demonstrate the effec-
tiveness of our approach in advancing the state-of-the-art for pure vision-based autonomous GUI
agents. To our knowledge, this is the first model that can autonomously complete tasks in real-world
online environments without relying on higher reasoning abilities from closed-source models.

Our contributions are as follows:

• We introduce a unified pure vision framework for building generalizable GUI agents that
operate with vision-based observations and a plugin-enabled action system, enhancing
cross-platform adaptability.

• We develop a comprehensive data pipeline that unifies existing GUI grounding annotations
and integrates explicit planning and reasoning. This enables the construction of large-scale
datasets for grounding and multi-step agent trajectory datasets across platforms.

• Starting with a VLM, we present a two-stage training process—first for GUI grounding,
followed by planning and reasoning—resulting in AGUVIS, the first cross-platform au-
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tonomous GUI agent capable of performing complex tasks independently without relying
on closed-source models. All data, models, and training resources will be open-sourced.

2 AGUVIS

2.1 PROBLEM FORMULATION

We model the autonomous GUI agent’s interaction with the environment as a Partially Observable
Markov Decision Process (POMDP), characterized by the tuple (S,A,O, T,O). In this formulation,
S represents the set of possible states of the environment, A denotes the set of actions the agent can
take, and O refers to the set of observations the agent can receive. The state transition function,
T : S × A × S → [0, 1], defines the probability of transitioning from one state to another given an
action, while the observation function, O : S×A×O → [0, 1], specifies the probability of receiving
a particular observation given a state and an action.

At each time step t, the agent receives an image observation ot from the GUI environment, reasons
and generates an inner monologue (Huang et al., 2022) based on its previous actions and observa-
tions. This inner monologue consists of three components: a natural language description of the
current observation (dt), internal reasoning (ht) based on the high-level goal G, the observation de-
scription dt, and previous thoughts ht−1, and finally, a low-level action instruction (ainstr

t ) in natural
language that specifies the next action. The agent then executes the action at based on the instruction
ainstr
t , receives a new observation ot+1, and repeats this process until it either achieves the goal G or

reaches a terminal state.

2.2 UNIFIED PURE VISION FRAMEWORK

Stage 2: Planning & Reasoning Training

Stage 1: Grounding Training

Image Observation
Screenshot of current 
GUI.

Low-level Instruction
Detailed action w/ 
grounded target.


Action
Atomic actions w/ 
coordinates


Aguvis-GVLM Aguvis

Goal

High-level Instruction

Image Observation

Screenshot of 
current GUI.

Low-level Instruction

Inner monologue

Detailed action w/ 
grounded target.


Observation + Reasoning

Action

Atomic actions w/ 
coordinates.


Figure 1: Overview of the two-stage training paradigm for autonomous GUI agents.

In this work, we propose to unify observation and action space via pure vision and pyautogui
commands with a pluggable action system (Table 9). For observation, pure vision does not require
the model to understand different UI source codes of the interfaces of different platforms, such
as HTML of the webpage, and accessibility tree of desktop and mobile operating systems, which
can help improve the generalization. Meanwhile, pure vision can reduce the input token length.
Generally, the input length of accessibility tree observation is 6k tokens (Xie et al., 2024), and
HTML is 4k tokens (Figure 2), depending on the complexity of the interface. Compared with
relatively long input, the token cost of image observation does not vary across different interfaces
but only depends on model design, which in our case is 1200 tokens for 720p image observation.

For unified action space, we choose the widely used standard pyautogui action space with a
pluggable action system. This library leverages the high-level programming language Python to
replicate and replay various human inputs into computers through code, allowing us to construct
a universal and complete representation of actions. We show the action space in Table 9. We use
pyautogui commands to unify basic GUI operations of all platforms including web, desktop, and
mobile. Over this action space, an agent model can then learn to generate actions in order to control
GUI without any action space description.
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While mouse and keyboard inputs form the core of GUI interactions, they are not comprehensive.
Certain platforms require additional actions. For example: (1) specific actions on mobile platforms
such as swiping; (2) shortcuts that efficiently perform a series of actions like opening apps; (3)
communication actions such as providing answers or terminating after completion. To address these
extended requirements, we introduce a pluggable action system. This system allows us to expand
the action space by aligning new actions with the existing pyautogui commands where possi-
ble. For actions that cannot be directly mapped, the pluggable system provides the flexibility to
incorporate them with detailed action descriptions. This enables the model to generalize effectively
to environments where new actions are introduced. By combining pure vision observations with a
unified action space and a flexible pluggable system, our framework enables the training of a single
model that can operate across diverse platforms. This setup not only simplifies the training process
but also ensures the model can generalize and adapt to novel environments and tasks.

2.3 THE AGUVIS COLLECTION

GUI agent trajectories are a low-resource data source compared with its challenges. This is because
the observation and action space vary across different environments even on the same platform.
Fortunately, GUI environments share the same operation logic and similar action space. We can
efficiently unify existing data to scale the training set. Therefore, we propose THE AGUVIS COL-
LECTION, a large-scale GUI agent training dataset collected and augmented with existing GUI agent
data. This data collection consists of two splits: grounding split (Table 10) and planning & reasoning
split (Table 11), corresponding to the two important GUI abilities.

Template-augmented Grounding Data. Vision-based grounding requires the model to ground
the natural language intent to the image observation with coordinates. On one hand, there are
several previous works that have built datasets on different platforms, including natural language
instructions and corresponding target elements. We collected and unified them into pyautogui
commands format. On the other hand, we found that there are many datasets proposed for user
interfaces on different platforms that contain a large amount of metadata, including the positions of
all text/icons/widgets in the current interface. Using this type of data we constructed templates for
pyautogui actions. We randomly generated grounding data pairs through these templates to train
models to ground these elements based on images. This operation greatly expanded the data scale.

VLM-augmented Planning & Reasoning Trajectories. High-quality GUI agent trajectories con-
tain several key components: a high-level goal, a sequence of interleaved observations, natural lan-
guage reasoning, and grounded actions. Existing approaches typically rely on human annotation to
collect these trajectories (Deng et al., 2023; Rawles et al., 2024b; Li et al., 2024c). Most of the agent
trajectory data contains high-level goals, observations, and grounded actions. However, the inter-
mediate reasoning process and low-level action instructions are not included. This makes it difficult
for existing data to train agents to perform chain-of-thought or inner monologue reasoning to help
the model plan the next action, resulting in poor agent performance.

To augment the agent trajectories with detailed reasoning and low-level action instructions, we em-
ploy a vision-language model (VLM) to generate the inner monologue for each step in the trajectory.
Specifically, for each time step t, given the high-level goal G, the current image observation ot, and
the grounded action at, we prompt the VLM to produce the inner monologue components: ob-
servation description dt, thoughts ht, and low-level action instruction ainstr

t . To assist the VLM in
generating accurate and contextually relevant monologues, we highlight the target element asso-
ciated with the grounded action at on the image observation ot. This visual cue helps the model
focus on the relevant part of the interface. Additionally, we include the previous low-level action
instructions ainstr

1 , ainstr
2 , . . . , ainstr

t−1 to provide the VLM with the action history, ensuring continuity
and coherence in the generated reasoning.

The prompting strategy is carefully crafted to guide the VLM in generating inner monologues that
are predictive and goal-oriented, without relying on hindsight or revealing future actions. By sim-
ulating the agent’s thought process in a first-person perspective, we encourage the generation of
actionable instructions that align with the high-level goal and current observation. This approach re-
sults in a large-scale dataset of agent trajectories enriched with detailed reasoning and instructions.
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2.4 MODEL ARCHITECTURE

Unlike grounding agents that rely on structured UI representations (such as accessibility trees) as
their textual input, vision-based grounding requires the model to map intents directly to visual ob-
servations. This means the model needs to encode high-resolution images while preserving their
original aspect ratios. Recent advances in VLMs have made these capabilities possible. We choose
Qwen2-VL (Wang et al., 2024b) as our starting VLM. It uses NaViT as an image encoder with native
dynamic resolution support (Dehghani et al., 2023). Unlike its predecessor, Qwen2-VL can now
process images of any resolution, dynamically converting them into a variable number of visual to-
kens. To support this feature, ViT is modified by removing the original absolute position embeddings
and introducing 2D-RoPE (Su et al., 2024) to capture the two-dimensional positional information
of images. Based on these unique features, Qwen2-VL is highly suitable for GUI agents’ needs. It
can encode high-resolution images of any ratio with relatively fewer image token costs. Therefore,
we chose Qwen2-VL as our starting VLM to build our GUI agent.

LLaVA-OneVision (Li et al., 2024a) is another suitable VLM as it also supports high-resolution
any ratio image encoding, although its image token cost is relatively higher than Qwen2-VL. We
also apply our data recipe and training strategy to LLaVA and show that our framework is model-
independent and generally works for high-resolution VLMs details are shown in Section 4.2..

2.5 TRAINING PARADIGM

We begin with a Vision-Language Model (VLM) that possesses advanced image understanding ca-
pabilities, and the training process is divided into two main stages: Grounding Training and Planning
& Reasoning Training. Each stage utilizes a distinct data split from our THE AGUVIS COLLECTION
to progressively enhance the VLM’s abilities.

Stage 1: Grounding Training In this stage, we focus on enabling the model to understand and
interact with objects within a single GUI screenshot. GUI environments typically feature multiple
interactable objects within a single screenshot, generating a large volume of grounding data but
leading to shorter, less diverse interaction sequences, which can limit training efficiency.

We train our model with a grounding packing strategy where multiple instruction-action pairs are
bundled into a single image, resulting in a single-image-multiple-turn format. This technique allows
the model to process several grounding examples from one screenshot, reducing redundant training
overhead while retaining a high level of grounding performance. This approach significantly ac-
celerates training by maximizing the use of each image without compromising accuracy. To equip
our model with the capability for GUI understanding and grounding, which serves as the foundation
for subsequent planning and reasoning, we conducted this training stage. Upon completing Stage 1
training, the model is referred to as AGUVIS-G.

Stage 2: Planning & Reasoning Training Building on the foundation of AGUVIS-G, the second
stage introduces more complex decision-making and reasoning processes. This phase is designed to
teach the model how to execute multi-step tasks by reasoning through agent trajectories that vary in
complexity and environments, encompassing diverse reasoning modes.

Thanks to our detailed inner monologue trajectory data, we implement a reasoning mixture ap-
proach, where the model is exposed to various levels of cognitive complexity, from straightfor-
ward low-level action instructions to full inner monologues that include observation descriptions,
thoughts, and detailed action plans. By dynamically adjusting the complexity of these trajectories,
we train the model to be adaptable, fostering step-by-step reasoning and high-level decision-making
abilities. This diversity in reasoning ensures that the model can handle a wide range of tasks with
nuanced understanding and precision. After this stage, the fully trained model is called AGUVIS,
which can be employed in both offline and online GUI tasks across diverse environments.

3 EXPERIMENTS

To evaluate the effectiveness of GUI agent models on various platforms, we conduct experiments on
several GUI benchmarks: GUI Grounding Evaluation and Offline/Online GUI Agent Evaluation.
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3.1 GUI GROUNDING EVALUATION

Table 1: Comparison of various planners and grounding methods on ScreenSpot across various de-
vice and input modalities. The top part of table shows the results on original instructions evaluation
setting while the bottom part shows results on self-plan evaluation setting. Best results are in bold.

Planner Grounder Mobile Desktop Web Avg
Text Icon/Widget Text Icon/Widget Text Icon/Widget

-

GPT-4 22.6 24.5 20.2 11.8 9.2 8.8 16.2
GPT-4o 20.2 24.9 21.1 23.6 12.2 7.8 18.3
CogAgent 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick 78.0 52.0 72.2 30.0 55.7 32.5 53.4
Qwen2-VL 75.5 60.7 76.3 54.3 35.2 25.7 55.3
UGround 82.8 60.3 82.5 63.6 80.4 70.4 73.3
AGUVIS-G-7B 88.3 78.2 88.1 70.7 85.7 74.8 81.8

GPT-4
SeeClick 76.6 55.5 68.0 28.6 40.9 23.3 48.8
OmniParser 93.9 57.0 91.3 63.6 81.3 51.0 73.0
UGround 90.1 70.3 87.1 55.7 85.7 64.6 75.6

GPT-4o SeeClick 81.0 59.8 69.6 33.6 43.9 26.2 52.3
UGround 93.4 76.9 92.8 67.9 88.7 68.9 81.4

AGUVIS-7B 95.6 77.7 93.8 67.1 88.3 75.2 84.4
AGUVIS-72B 94.5 85.2 95.4 77.9 91.3 85.9 89.2

ScreenSpot. We first assess the performance of GUI grounding, which is a foundational capability
of GUI agent models. Following previous work (Cheng et al., 2024; Gou et al., 2024), we evalu-
ate models on ScreenSpot (Cheng et al., 2024). This dataset encompasses a variety of grounding
instructions tailored for mobile, desktop, and website platforms, and is assessed under two distinct
settings: (1) Original Instructions: models perform grounding actions directly following the original
instructions; and (2) Self-plan: models are required to generate plans in natural language based on
the original instructions before executing grounding actions.

The performance illustrated in Table 1 demonstrates that AGUVIS exhibits impressive GUI ground-
ing capabilities under two settings across various platforms. We observe that with the proposed
grounding training, AGUVIS-G-7B significantly outperforms existing models with the original in-
structions, suggesting that AGUVIS has strong universal GUI grounding capability. After training
on high-quality planning trajectory data, AGUVIS shows strong planning capability and outperforms
previous models that rely on external closed-source LLMs (like GPT-4o). Moreover, further scaling
parameters, AGUVIS-72B achieves state-of-the-art performance, attaining an average score of 89.2.

Table 2: Performance comparison on Multimodal Mind2Web across different settings. We report
element accuracy (Ele.Acc), Operation F1 (Op.F1), and step success rate (Step SR). Best results are
in bold. “T” means the textual HTML code as inputs. “I” means the GUI images as inputs. More
explanation about result source in Appendix D.2

Obs. Planner Grounder Cross-Task Cross-Website Cross-Domain
Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR

T GPT-3.5 Choice 19.4 59.2 16.8 14.9 56.5 14.1 25.2 57.9 24.1
GPT-4 Choice 40.8 63.1 32.3 30.2 61.0 27.0 35.4 61.9 29.7

T + I GPT-4 Choice 46.4 73.4 40.2 38.0 67.8 32.4 42.4 69.3 36.8
GPT-4 SoM 29.6 - 20.3 20.1 - 13.9 27.0 - 23.7

I - SeeClick 23.8 - - 15.3 - - 16.2 - -
- CogAgent 54.2 - - 50.0 - - 54.7 - -

I
GPT-4o SeeClick 32.1 - - 33.1 - - 33.5 - -
GPT-4V OmniParser 42.4 87.6 39.4 41.0 84.8 36.5 45.5 85.7 42.0
GPT-4o UGround 47.7 - - 46.0 - - 46.6 - -

I AGUVIS-7B 64.2 89.8 60.4 60.7 88.1 54.6 60.4 89.2 56.6
AGUVIS-72B 69.5 90.8 64.0 62.6 88.6 56.5 63.5 88.5 58.2
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3.2 OFFLINE GUI AGENT EVALUATION

Multimodal-Mind2Web. We utilize Multimodal-Mind2Web (Zheng et al., 2024a) for evaluat-
ing the offline planning capabilities of GUI agents on websites, which builds on the original
Mind2Web (Deng et al., 2023). We compare with previous work including closed LLMs taking
text-only (Deng et al., 2023) or SoM as inputs (Zheng et al., 2024a) and recent prue vision-based
agent models. Following previous work (Cheng et al., 2024; Gou et al., 2024), AGUVIS only use the
GUI screenshot as observation. We report element accuracy (Ele.Acc), Operation F1 (Op.F1), and
step success rate (Step SR). As shown in Table 2, AGUVIS consistently achieves superior perfor-
mance, with a notable improvement in Step SR (+51.9% averaged), indicating enhanced reasoning
capabilities regarding planning.

AndroidControl. We assess the planning performance of GUI agent models on mobile devices
using AndroidControl (Li et al., 2024d). Following the setting in Li et al. (2024d), we randomly
sample 500 step-actions to create a subset, and we report the step accuracy on out-of-domain (OOD)
data within both high-level and low-level tasks. The high-level task setting necessitates that the
model plans and executes actions, whereas the low-level task setting requires the model to simply
adhere to human-labeled instructions for executing the next-step action. We compare with baselines
that take textual accessibility tree or images as GUI observations. Table 3 shows that AGUVIS
achieves the best performance under both settings.

Table 3: Step Accuracy of out-of-domain (OOD) data on AndroidControl under high-level tasks and
low-level tasks. Best performance is in bold. “Acc.Tree” means the textual accessibility tree.

Observation Planner Grounder Step Accuracy
High-Level Low-Level

Acc. Tree GPT-4-Turbo Choice 42.1 55.0
PaLM 2S (Specialized) Choice 58.5 77.5

Image

GPT-4-Turbo SeeClick 39.4 47.2
GPT-4-Turbo UGround 46.2 58.0
GPT-4o SeeClick 41.8 52.8
GPT-4o UGround 48.4 62.4

Image AGUVIS-7B 61.5 80.5
AGUVIS-72B 66.4 84.4

3.3 ONLINE GUI AGENT EVALUATION

Beyond offline planning, we test AGUVIS on real-time interaction benchmarks: Mind2Web-
Live (Pan et al., 2024b), AndroidWorld (Rawles et al., 2024a) and MobileMiniWob (Rawles et al.,
2024b). We introduce each benchmark below and more details are shown in D.3

Mind2Web-Live. Mind2Web-Live is a dynamic dataset in a real web-based environment derived
from the original Mind2Web. The benchmark evaluates whether each required step within a task has
been completed and uses the task success rate (Task SR) as the reported metric.

AndroidWorld. AndroidWorld is a benchmark operating on an Android virtual environment, ca-
pable of dynamically instantiating with randomly generated parameters to generate unique tasks for
automatic evaluation. To assess the pure vision agent models, we follow the instructions in Rawles
et al. (2024b), installing a Pixel 6 phone simulator on our computers to serve as the experimental
environment. The AndroidWorld benchmark incorporates a fully automated task-level evaluation
system that automatically assesses whether a state has successfully completed a designated task.

MobileMiniWob. MobileMiniWob is the instantiation of 92 tasks from MiniWob++ (Zheng et al.,
2024b) in AndroidWorld environment. Thus, we adopt the same observation and action space uti-
lized in AndroidWorld and use a real-time evaluation function to determine task success rate.
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Table 4: Task Success Rate (SR) and efficiency costs on Mind2Web-
Live. USD Efficiency is calculated by dividing the model’s total infer-
ence cost in USD by the number of successful steps.

Inputs Planner Grounder Task SR USD Efficiency

HTML

GPT-4-Turbo Choice 21.1 -
GPT-4o Choice 22.1 0.142
Llama-3.1-405B Choice 24.0 0.174
Llama-3.1-70B Choice 20.2 0.031
GPT-3.5-turbo Choice 17.3 0.092

Image
GPT-4-Turbo UGround 23.1 -
GPT-4o UGround 19.2 -
GPT-4o AGUVIS-7B 24.0 0.106

Image AGUVIS-72B 27.1 0.012

Figure 2: Comparison of Input
Tokens per Step and USD Effi-
ciency in GUI Interaction. The
bar chart shows the input tokens
required per step during GUI in-
teractions, while the line graph il-
lustrates USD Efficiency for all
models.
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Table 5: Task Success Rates (SR) on AndroidWorld and
MobileMiniWob. Best results are in bold.

Input Planner Grounding AndroidWorldSR MobileMiniWobSR

AXTree GPT-4-Turbo Choice 30.6 59.7
Gemini 1.5 Pro Choice 19.4 57.4

Image + AXTree GPT-4-Turbo SoM 25.4 67.7
Gemini 1.5 Pro SoM 22.8 40.3

Image
GPT-4-Turbo UGround 31.0 -
GPT-4o UGround 32.8 -
GPT-4o AGUVIS-7B 37.1 55.0

Image AGUVIS-72B 26.1 66.0

Table 6: Success rate on
the OSWorld benchmark in a
screenshot-only setting

Planner Grounding Task SR
GPT-4o 5.03
GPT-4V 5.26

Gemini-Pro-1.5 5.40

GPT-4o SoM 4.59
GPT-4o AGUVIS-7B 11.07

AGUVIS-72B 10.26

In our online experiments, we explore two distinct configurations. The first configuration employs
GPT-4o as the planner, collaborating with our AGUVIS-7B, which serves as the grounder. The sec-
ond setup utilizes our AGUVIS-72B in a dual role, acting as both the planner and the grounder. We
compare the performance of these configurations with existing SOTA methods that use GPT-4(o)
models as planners. Unlike existing methods that rely on Set-of-Mark (SoM) or textual HTML/AX-
Tree information, AGUVIS uses only screenshots as observations and is restricted to pyautogui
actions A in all environments: We set the screenshot viewport to a resolution of 1280 × 720 and
disabled all actions based on HTML/AXTree selection.

As shown in Table 4 and Table 5, when incorporating the GPT-4o as planner, AGUVIS-7B outper-
forms existing work in task success rate across various benchmarks. We further adopt our AGUVIS-
72B both as the planner and grounder, achieving the best performance on Mind2Web-Live and Mo-
bileMiniWob, which demonstrates the advantage potential of employing purely visual agent models
for autonomous GUI interactions. By employing AGUVIS-72B as both the planner and the grounder,
we achieve the best performance on Mind2Web-Live and MobileMiniWob. This underscores the
advantages of utilizing a unified purely visual agent model for autonomous GUI interactions. Fur-
thermore, we observe that our model demonstrates a significant advantage in terms of efficiency
costs compared to both closed-source and open-source models (as discussed below), demonstrating
that there is considerable potential for applying purely visual agents in real-world online scenarios.

4 ANALYSIS

4.1 ABLATION

To assess the impact of each stage in the training pipeline of AGUVIS, we conduct ablation exper-
iments. Specifically, we evaluate the performance of the following variants: (a) a model trained
without the second stage (planning training), referred to as AGUVIS-G-7B, and (b) a base model,
Qwen2-VL (Wang et al., 2024a), without both stages of our specialized training. We report the
results of these ablations on two key benchmarks, Multimodal-Mind2Web and AndroidControl, fo-
cusing on the step success rate as the evaluation metric (Table 7). The findings show a clear decline
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Table 7: Ablation on AGUVIS-7B on MM-Mind2Web and AndroidControl benchmarks. We report
the step success rate. We provide a more comprehensive ablation in Appendix E.1

Settings ScreenSpot Multimodal-Mind2Web AndroidControl
Cross-Task Cross-Website Cross-Domain High-Level Low-Level

AGUVIS-7B 84.4 58.5 55.4 54.8 61.5 80.5
(a) w/o Stage 2 81.8 50.9 45.2 45.3 58.0 75.6
(b) w/o Stage 1 77.4 59.7 55.3 56.8 58.8 79.8
(c) w/o Stage 1 & 2 55.3 50.9 44.9 47.7 59.1 59.2

(d) w/o Inner Monologue 79.3 55.4 53.7 54.9 60.3 69.1

in performance when either training stage is omitted. Notably, omitting the second stage (planning
and reasoning) has a more significant negative effect on the model’s step success rate, indicating that
planning training is critical for enhancing the agent’s ability to handle complex GUI tasks.

4.2 GENERAZATION ON OTHER VLM BACKBONE

Table 8: Performance of AGUVIS based on LLaVA-
OneVision backbone. We report the average score on
ScreenSpot and the step success rate of each split in
Multimoda-Mind2Web. These results demonstrate that
our framework and data recipe are model independent
and the planning stage can largely improve the perfor-
mance of both grounding and planning ability.

Models ScreenSpot MM-Mind2Web
Average Task Website Domain

Previous SOTA 73.3 39.4 36.5 42.0
AGUVISOV-G-7B 70.0 43.4 39.0 40.7
AGUVISOV-7B 81.2 55.3 50.0 50.8

Figure 3: Error analysis on Screenspot dataset
under the self-plan setting.

Self Plan Enforced Plan
0

0.2

0.4

0.6

0.8

1 Planning Bonus

Ambiguous Error Grounding Error

In our experiments, we also implement a version of AGUVIS based on another typical VLM LLaVA-
OneVision (Li et al., 2024a), named AGUVISOV-7B, to explore the generalizability of AGUVIS. We
report the average score of ScreenSpot and the step success rate of Multimoda-Mind2web. These
results demonstrate that our framework and data recipe are model-independent and the planning
training stage can largely improve the performance of both grounding and planning ability.

4.3 EFFICIENCY

We investigate the efficiency costs of AGUVIS on the online planning benchmark Mind2Web-Live.
Following Pan et al. (2024a), we adopt the USD Efficiency Score to evaluate the efficiency of our
model in completing tasks. Specifically, this Score is calculated as the total dollar cost of tokens
used by the model to complete all tasks in the dataset divided by the total Success Steps. A lower
USD Efficiency Score indicates that the model requires fewer USD to complete a successful step.
In addition to the USD Efficiency Score, we calculated the number of tokens consumed during the
completion of the whole dataset divided by the total number of steps taken by agent models. This
reflects the average number of tokens consumed per step.

As shown in Figure 2, AGUVIS significantly reduces the efficiency costs by reducing 93% USD
costs and 70% input tokens per step compared to GPT-4o, which indicates considerable potential for
applying purely visual agents in practical applications.

4.4 ERROR ANALYSIS

We conduct an error analysis of AGUVIS on 50 samples from the ScreenSpot dataset under the self-
plan setting to understand the impact of planning on performance. As shown in Figure 3, our findings
reveal that 40% of errors are due to ambiguous instructions that could refer to multiple grounding
targets, while the remaining 60% are grounding errors. We observe that in these error cases, the
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model tends to perform direct grounding action rather than planning explicitly before acting. No-
tably, when we enforce planning by prompting the agent model to generate low-level instructions
before execution, it resolved 20% of the grounding errors. This suggests that while the agent model
possesses strong grounding capabilities, there remains significant potential for improvement in ef-
fectively leveraging planning and reasoning. These insights highlight opportunities for future work,
including improving instruction clarity through the agent model itself, developing adaptive planning
mechanisms, and refining training data to include more diverse planning scenarios. Addressing these
aspects could further enhance our GUI agent model’s robustness on various tasks and environments.

5 RELATED WORK

5.1 BENCHMARKS AND DATASETS FOR GUI AGENT

Recent advancements in autonomous GUI agents have led to the development of numerous
benchmarks and datasets. Web-based benchmarks such as Mind2Web (Deng et al., 2023), We-
bArena (Zhou et al., 2024; Koh et al., 2024a), WebLINX (Lù et al., 2024), WorkArena (Drouin
et al., 2024) and WebCanvas (Pan et al., 2024b) focus on evaluating agents’ performance in web
environments. For desktop and mobile platforms, datasets like OSWorld (Xie et al., 2024), Win-
dowsAgentArena (Bonatti et al., 2024), AitW (Rawles et al., 2024b), AitZ (Zhang et al., 2024b),
AMEX (Chai et al., 2024), GUI-Odyssey (Lu et al., 2024) and AndroidControl (Li et al., 2024b)
have been introduced to assess agents’ capabilities across different operating systems and device
types. Cross-platform datasets such as ScreenSpot (Cheng et al., 2024), OmniACT (Kapoor et al.,
2024), GUICourse (Chen et al., 2024a), and CRAB (Xu et al., 2024a) aim to provide comprehensive
evaluation frameworks spanning multiple devices and interfaces. Evaluations on specialized appli-
cations have also emerged, such as WonderBread (Wornow et al., 2024)’s focus on business process
management tasks and Spider-2V (Cao et al., 2024)’s on data science and engineering workflows. In
this work, we extensively test benchmarks under both online and offline task settings to thoroughly
evaluate and demonstrate the model’s planning and grounding capabilities.

5.2 MODELS AND APPROACHES FOR GUI AGENT

In parallel with dataset development, significant progress has been made in creating more capa-
ble GUI agents. Models like WebGPT (Nakano et al., 2021), Lemur (Xu et al., 2024b), Agent-
Lumos (Yin et al., 2024), CogAgent (Hong et al., 2024), AutoWebGLM (Lai et al., 2024) and
xLAM (Zhang et al., 2024a) have demonstrated improved performance in web navigation tasks.
Auto-GUI (Zhang & Zhang, 2024), AppAgent (Zhang et al., 2023), and ScreenAgent (Niu et al.,
2024) propose novel approaches for direct GUI interaction without relying on application-specific
APIs. SearchAgent (Koh et al., 2024b) introduces an inference-time search algorithm to enhance
multi-step reasoning and planning in interactive web environments. These advancements collec-
tively contribute to developing more sophisticated and capable GUI agents, pushing the boundaries
of what’s possible in automated task completion across various digital platforms.

6 CONCLUSION

In this paper, we introduced AGUVIS, a unified pure vision-based framework for building au-
tonomous GUI agents that operate across diverse platforms. By only leveraging vision-based ob-
servations and a consistent action space, AGUVIS addresses the key challenges of GUI grounding,
planning, and reasoning. Our framework unifies and augments existing datasets, enabling more ef-
fective cross-platform generalization while reducing inference costs. Extensive experiments demon-
strate that AGUVIS outperforms existing methods in both offline and online GUI tasks, showcasing
the first fully autonomous pure vision GUI agent capable of completing real-world tasks without
reliance on closed-source models. We will open-source all data, models, and training recipes to
facilitate future research in this exciting domain.
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A AGUVIS UNIFIED DESIGN

A.1 DETAILS OF ACTION SPACE IN AGUVIS

In this section, we introduce our unified action space of our pure vision agent framework AGUVIS.
As shown in Table 9, we use default standard pyautogui actions with pluggable actions as the
action space of AGUVIS, which ensures the agent model’s universality across environments as well
as its flexibility in the specific environment.

Table 9: Default standard pyautogui actions A with pluggable actions.

Category Action Space

Basic
Actions

pyautogui.moveTo(x, y)
pyautogui.click(x, y)
pyautogui.write(‘text’)
pyautogui.press(‘enter’)
pyautogui.hotkey(‘ctrl’, ‘c’)
pyautogui.scroll(200)
pyautogui.dragTo(x, y)

Pluggable
Actions

browser.select option(x, y, value)
mobile.swipe(from, to)
mobile.home()
mobile.back()
mobile.open app(name)
terminate(status)
answer(text)

... ...

A.2 PLUGGABLE FUNCTIONS: MOBILE ENVIRONMENTS AS AN EXAMPLE

In the mobile environment, we provide the following pluggable functions for Aguvis, along with
their corresponding descriptions as shown in Figure A.2.

Pluggable Functions for AGUVIS

You are a GUI agent. You are given a task and a screenshot of the
screen. You need to perform a series of pyautogui actions to
complete the task.

You have access to the following functions:
- {"name": "mobile.home", "description": "Press the home button"}
- {"name": "mobile.back", "description": "Press the back button"}
- {

"name": "mobile.long_press",
"description": "Long press on the screen",
"parameters": {

"type": "object",
"properties": {"x": {"type": "number", "description": "The
x coordinate of the long press"}, "y": {"type": "number",
"description": "The y coordinate of the long press"}},
"required": ["x", "y"]

}
}

- {
"name": "mobile.open_app",
"description": "Open an app on the device",
"parameters": {

"type": "object",

17
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"properties": {"app_name": {"type": "string",
"description": "The name of the app to open"}},
"required": ["app_name"]

}
}

- {
"name": "terminate",
"description": "Terminate the current task and report its
completion status",
"parameters": {

"type": "object",
"properties": {"status": {"type": "string", "enum":
["success"], "description": "The status of the task"}},
"required": ["status"]

}
}

- {
"name": "answer",
"description": "Answer a question", "parameters": {

"type": "object",
"properties": {"answer": {"type": "string", "description":
"The answer to the question"}},
"required": ["answer"]

}
}

B DATA CURATION OF THE AGUVIS COLLECTION

B.1 DETAILED SOURCE DATASET STATISTICS

We present the detailed statistical information of all training datasets utilized in both the grounding
and planning & reasoning stages. The statistics are shown in Table 10 and Table 11, respectively.

Table 10: The grounding split of THE AGUVIS COLLECTION. Each example in this split consists
of a single-step trajectory.

Data source Platform Instruction #Trajectory

SeeClick (Cheng et al., 2024) Website Augmented 271K
GUIEnv (Chen et al., 2024a) Website Augmented 328K
GUIAct (Chen et al., 2024a) Website Original 67K
WebUI (Wu et al., 2023) Website Augmented 57K
Widget Captioning (Li et al., 2020b) Mobile Original 101K
RicoSCA (Li et al., 2020a) Mobile Original 173K
UI RefExp (Bai et al., 2021) Mobile Original 16K
RICO Icon (Deka et al., 2017) Mobile Augmented 16K
OmniACT (Kapoor et al., 2024) Desktop & Website Original 7K

Total 1.036M

B.2 PROMPT FOR AUGMENTING PLANNING & REASONING TRAJECTORIES

Prompt for GPT-4o generating planning & reasoning data

Goal: {goal}
Previous Actions: {previous_actions}

Given the current screenshot and the next ground truth action
labeled as `{current_action_instruction}`, the action commands is:

18
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```json
{action_commands}
```
This element is highlighted in red bounding box in the image.

Describe the situation in detail, focusing on the goal and current
observation. Ensure your reasoning aligns with the goal and the
labeled action, but avoid using the labeled action or the
highlighted bounding box as reasoning support, as they represent
hindsight rather than predictive insight. Conclude with a clear,
actionable instruction in one sentence. Aim to reason through the
task as if solving it, rather than simply reflecting on the labeled
outcome. Use the first-person perspective to represent the
annotator's thought process.

We use GPT-4o as the foundational model to augment our integrated agent trajectory. In this stage,
goal represents the target of the trajectory, previous actions is a stack of all past low-level instruc-
tions, current action instruction refers to the low-level instruction corresponding to the current ac-
tion in the dataset, and action commands is the representation of the current action in the form of
PyAutoGUI code within the dataset.

B.3 HUMAN STUDY ON AUGMENTED DATA

B.3.1 QUALITATIVE HUMAN STUDY

Based on our findings that our Augmented Planning and Reasoning Data improves the performance
of Aguvis, we conducted a qualitative study on augmented data. From the VLM-augmented data,
we selected 90 samples for a human study and evaluated them according to specific criteria.

We determined that for augmented data to be considered successful, it must:

• Match the action type and action target elements of the ground truth,
• Correctly describe the step’s intention,
• Establish a clear connection between the step’s intention and the overall goal,
• Assist the agent in successfully completing the task.

Among the sampled data, we found that 86.7% demonstrated intermediate reasoning that aligned
with the ground truth actions and the overall goal’s action intention. The remaining 7.8% cases were
influenced by dataset noise (irrelevant or unnecessary actions within the task), and 5.5% cases were
due to misinterpretations of the action intention under clean data.

B.3.2 FAILURE CASES UNDER NOISY TRAINING DATA

We analyzed error cases in the generated data and identified several issues. Specifically, we found
that unnecessary actions in the training data can lead to the VLM failing to establish a connection

Table 11: The planning & reasoning split of THE AGUVIS COLLECTION.

Data source Platform Inner Monologue Avg. Steps #Trajectory

MM-Mind2Web (Zheng et al., 2024a) Website Generated 7.7 1,009
GUIAct (Chen et al., 2024a) Website Generated 6.7 2,482
MiniWoB++ (Zheng et al., 2024b) Website Generated 3.6 2,762
AitZ (Zhang et al., 2024b) Mobile Original 6.0 1,987
AndroidControl (Li et al., 2024d) Mobile Original 5.5 13,594
GUI Odyssey (Lu et al., 2024) Mobile Generated 15.3 7,735
AMEX (Chai et al., 2024) Mobile Generated 11.9 2,991
AitW (Rawles et al., 2024b) Mobile Generated 8.1 2,346

Total 35K
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between these extra actions and the overall goal, ultimately resulting in incorrect reasoning and
planning.

While these redundant actions do not compromise the trajectory’s overall completeness or correct-
ness, they do introduce challenges for the VLM in generating accurate planning.

Goal: Show me the page with information about Wi-
Fi subscriptions.





Previous actions:

Step 1: Click on the 'TRAVEL INFO' tab to explore 
available options for Wi-Fi subscription 
information.

Step 2: Click on the 'Pre-paid Wi-Fi' link to access 
Wi-Fi subscription information.



Action: pyautogui.click(x=0.8018, y=0.6183)



Generated Planning

Goal: Find the documents required to sell a car in 
New Jersey for which payments are being paid and it 
has single person on the title who can come to the 
store



Previous actions:

Step 1: Click on the 'Sell/Trade' link in the navigation 
bar to proceed.

Step 2: Select 'New Jersey' from the dropdown menu 
labeled 'In what state are you selling the car?'.




Action: pyautogui.click(x=0.5938, y=0.8633)


Observation: The page asks if payments are still 
being made on the car and if there is more than one 
person on the title, with the option to select either 
'Yes' or 'No' for both questions. Currently, the focus is 
on confirming that payments are being made, as 
illustrated by the page.



Thought: To determine the document requirements 
for selling a car in New Jersey, I need to select options 
that accurately reflect the current status of the car's 
payments and ownership. Since payments are being 
made, I will choose 'Yes' for that question to proceed 
and assess any further requirements or conditions this 
might bring into play.



Low-level Instruction: Click on the 'Yes' radio button 
next to 'Are you making payments on the car?'

Generated Planning

Observation: I am on a page related to United Wi-Fi 
options, which includes a link for Wi-Fi subscriptions. 
This is in line with my goal to gather information 
about Wi-Fi subscriptions for flights.




Thought: Identifying the 'Wi-Fi subscriptions' link on 
the United Wi-Fi page aligns perfectly with the goal of 
finding subscription information. I am considering 
available options and see a dedicated link for 
subscriptions.




Low-level Instruction: Click on the 'Wi-Fi 
subscriptions' link to access information about Wi-Fi 
subscriptions.

Figure 4: Examples of augmented planning and reasoning data generated by GPT-4o. The position
of the mouse in the image represents the ground truth click position in the training data.
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C AGUVIS TRAINING

C.1 TRAINING EXAMPLE SCHEMA

Training Data Schema of Stage 1 Grounding

Prompt
<|im_start|>system
You are a GUI agent. You are given a task and a screenshot of the
screen. You need to perform a series of pyautogui actions to
complete the task.<|im_end|>
<|im_start|>user
<|vision_start|><|image_pad|><|vision_end|>
Please generate the next move according to the ui screenshot,
instruction and previous actions.
Instruction: {overall_goal}
Previous actions: {previous_actions}
<|im_end|>

Generation
<|im_start|>assistant<|recipient|>os
Action: {pyautogui function}
<|diff_marker|>

Training Data Schema of Stage 2 Planning

Prompt
<|im_start|>system
You are a GUI agent. You are given a task and a screenshot of the
screen. You need to perform a series of pyautogui actions to
complete the task.<|im_end|>
<|im_start|>user
<|vision_start|><|image_pad|><|vision_end|>
Please generate the next move according to the ui screenshot,
instruction and previous actions.
Instruction: {overall_goal}
Previous actions: {previous_actions}
<|im_end|>

Generation
<|im_start|>assistant<|recipient|>all
Observation: {Observation}
Thought: {Planning}
Low-level Instruction: {Low-level Instruction}
<|im_end|>
<|im_start|>assistant<|recipient|>os
Action: {pyautogui function}
<|diff_marker|>

AGUVIS introduces a novel explicit planning and reasoning training framework that differs from
existing approaches. We illustrate these differences with visual examples in Figure 5. While existing
training datasets utilize trajectory data to fine-tune agents, these approaches often involve agents
directly outputting action commands (e.g., via pyautogui), bypassing the generation of observations,
thoughts, and low-level instructions in natural language that correspond to actions. To elicit the
reasoning and planning capabilities of vision-language models and provide the model with richer
context for action generation, we scale up training datasets that explicitly require the model to output
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reasoning and planning steps. Moreover, this approach enhances the interpretability of computer-use
agents’ behavior, laying a solid foundation for future research.

C.2 TRAINING DETAILS

For AGUVIS based on the Qwen2-VL backbone, we set the maximum pixels for each image to
1280 × 720 to achieve a better trade-off between performance and efficiency1. Following the SFT
strategy in Wang et al. (2024a), we freeze the ViT parameters during training. For AGUVIS based on
the LLaVA-OneVision backbone, we adopt the anyres strategy, which splits high-resolution images
into multiple patches following (Li et al., 2024a). The maximum sequence length of tokens is set to
8192 for all models. We use Adam optimizer (Loshchilov & Hutter, 2019) for both grounding and
planning & reasoning training stages and employ a cosine learning rate scheduler with a warm-up
ratio of 3% steps. In the grounding stage, we introduce a grounding packing strategy to enhance
training efficiency. We conduct an ablation study using the grounding data of website platform to
investigate the strategy effectiveness. We observe that it reduces overall GPU hours from 6 hours
to 1 hour. Moreover, this strategy even marginally improve the performance of ScreenSpot website
split from 73.3 to 76.8.

We train AGUVIS with a batch size of 128 for 1 epoch in each stage. The peak learning rate is set
to 1e-5 for AGUVIS-7B and 5e-6 for AGUVIS-72B. Our codebase is based on Pytorch (Paszke et al.,
2019) and Huggingface Transformers (Wolf et al., 2019). During training, we utilize the strategies of
DeepSpeed optimization (Rajbhandari et al., 2020), BF16 format and gradient checkpointing to save
GPU memory. We train AGUVIS on a cluster of H100-80G GPUs: AGUVIS-7B uses 8 nodes and
completes the grounding training within 5 hours and planning & reasoning training within 1 hour.
AGUVIS-72B uses 16 nodes and completes the grounding training within 30 hours and planning &
reasoning training within 6 hours.

D EVALUATION BENCHMARKS

In this section, we introduce more details of evaluation benchmarks used in our work.

D.1 GUI GROUNDING EVALUATION

ScreenSpot. ScreenSpot (Cheng et al., 2024)is a typical benchmark designed specifically for GUI
visual grounding, consisting of 1.2K single-step instructions and coordinates of the target elements.
This dataset encompasses a variety of grounding instructions tailored for mobile, desktop, and web-
site platforms, and categorizes element types into text and icons/widgets. The benchmark is assessed
under two distinct settings: (1) Original Instructions: models perform grounding actions directly fol-
lowing the original instructions; and (2) Self-plan: models are required to generate plans in natural
language based on the original instructions before executing grounding actions.

D.2 OFFLINE GUI AGENT EVALUATION

Multimodal-Mind2Web. We utilize Multimodal-Mind2Web (Zheng et al., 2024a) for evaluat-
ing the offline planning capabilities of GUI agents on websites, which builds on the original
Mind2Web (Deng et al., 2023). We report element accuracy (Ele.Acc), Operation F1 (Op.F1), and
step success rate (Step SR).

In Table 2 for Multimodal Mind2Web (Zheng et al., 2024a), we only report element accuracy for
SeeClick (Cheng et al., 2024) and CogAgent (Hong et al., 2024). This is because the original
SeeClick and CogAgent models were evaluated on Mind2Web (Deng et al., 2023), not Multimodal
Mind2Web, making the examples misaligned and incomparable. Therefore, we referenced the re-
sults from UGround (Gou et al., 2024), where they report the element accuracy of the SeeClick and
CogAgent models on Multimodal Mind2Web, striving to comprehensively present all previously
representative methods.

1During preliminary experiments, we observe that increasing the maximum pixels to 1920× 1080 does not
yield significant improvements on ScreenSpot performance.
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Existing GUI Agent Data

Please generate the next move according to the 
UI screenshot, instruction and previous actions.



Instruction: Plan a trip from Boston Logan 
Airport to North Station.



Previous actions:

Step 1: Click on the 'Trip Planner' tab to begin 
planning the trip.

Step 2: Click on the 'From' input field and type 
'Boston Logan Airport'.

Step 3: Click on 'Boston Logan Int'l Airport, 1 
Harborside Dr, East Boston, MA 02128, United 
States' to set it as my starting location.




Observation:  The trip planner interface is open with 
the 'From' field set to Boston Logan Airport. The 'To' 
field is empty, awaiting input for the destination.



Thought: I have set my starting point as Boston Logan 
Airport. To proceed, I need to set the destination to 
North Station, allowing the trip planner to suggest 
routes. 


Low-level Instruction: Click on the 'To' input field and 
type 'North Station' as the destination.



Action:

pyautogui.click(x=0.6756, y=0.4)

pyautogui.write(text='North Station')


Aguvis Collection Data

Prompt

Generation

Please generate the next move according to the 
UI screenshot, instruction and previous actions.



Instruction: Plan a trip from Boston Logan 
Airport to North Station.



Previous actions:

Step 1: pyautogui.click(x=0.4754, y=0.2062)

Step 2: pyautogui.click(x=0.3295, y=0.4)

pyautogui.write(text='Boston Logan Airport')

Step 3: pyautogui.click(x=0.3262, y=0.4764)


















Action:

pyautogui.click(x=0.6756, y=0.4)

pyautogui.write(text='North Station')


Prompt

Generation

Image Input

Figure 5: Compared to the schema of exisiting gui agent data (left), the schema of AGUVIS plan-
ning & reasoning data (right) includes explicit reasoning process with informative natural languaeg
previous action context.
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AndroidControl. Following the setting in Li et al. (2024d), we randomly sample 500 step-actions
from AndroidControl full test set to create a subset, and we report the step accuracy on out-of-
domain (OOD) data within both high-level and low-level tasks. The high-level task setting necessi-
tates that the model plans and executes actions, whereas the low-level task setting requires the model
to simply adhere to human-labeled instructions for executing the next-step action.

D.3 ONLINE GUI AGENT EVALUATION

Mind2Web-Live. We adopt Mind2Web-Live (Pan et al., 2024b) to evaluate GUI agents’ online
planning, a derived dynamic data set from Mind2Web, comprising 104 real-time interactive web
tasks. It evaluates whether each required step within a task has been successfully completed and uses
the task success rate (Task SR) as the reported metric. The original Mind2Web-Live is built with
WebCavas (Pan et al., 2024a), which is a text-based agent framework. To better accommodate the
unified observation and action space of pure vision models, we utilize BrowserGym (Drouin et al.,
2024) as the evaluation environment for online web tasks which provide support for pure vision-
based agent models. BrowserGym is a browser testing environment built on the Playwright (Mi-
crosoft, 2024) engine. We incorporate all Mind2Web-Live tasks and evaluation into BrowserGym,
involving registering all Mind2Web-Live tasks, setting up the entry points for these tasks, and port-
ing the Mind2Web-Live evaluation functions to BrowserGym.

As Mind2Web-Live is a text-based benchmark, we have to adapt its evaluation function to suit our
pure vision-based model. To achieve this, we introduce the two modifications following:

• For the Mind2Web-Live benchmark’s click verification, we adapt our coordinate-based
approach by comparing the ground truth CSS selector’s bounding box (when available)
with our click coordinates, as we cannot directly identify HTML elements.

• Similarly, for input validation, we retrieve and compare the value of the ground truth input
element (if present) with the expected value, circumventing the need for precise HTML
element identification based on CSS selectors.

The Mind2Web-Live environment relies on real-world websites, many of which implement detection
systems for automated browser testing and reCAPTCHA challenges. These factors created difficul-
ties during evluation on the Mind2Web-Live dataset, resulting in a lower task success rate (Task
SR). Specifically, we observed the following websites to have significant issues with automation
detection:

• kohls. Model using the search functionality on the Kohls website through Playwright di-
rectly results in a 502 Bad Gateway error.

• target. We are unable to open target’s job website using Playwright due to network con-
nection error.

• united. We are unable to open united website using Playwright due to network connection
error.

In addition to the websites that were consistenly prone to failure, several other sites intermittently
blocked our Playwright access during testing. In total, we encountered 18 network errors and 6
reCAPTCHA tasks that the model was unable to complete, preventing our model from scoring on
these 24 tasks.

AndroidWorld. AndroidWorld (Rawles et al., 2024b) is a benchmark operating on an Android
virtual environment, capable of dynamically instantiating with randomly generated parameters to
generate unique tasks for automatic evaluation. It spans 20 real-world applications, encompassing
116 diverse tasks. To assess the pure vision agent models, we follow the instructions in Rawles
et al. (2024b), installing a Pixel 6 phone simulator on our computers to serve as the experimental
environment. The benchmark incorporates a fully automated task-level evaluation system that auto-
matically assesses whether a state has successfully completed a designated task. The AndroidWorld
environment supports optional inputs such as Set-of-Mark (SoM) and textual AXTree information,
which most multimodal models currently rely on to complete tasks. However, we solely use raw
screenshots as the observation input and restrict the model to coordinate-level actions and basic
mobile functions.
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MobileMiniWob. MobileMiniWob (Rawles et al., 2024b) is the instantiation of 92 tasks from
MiniWob++ (Zheng et al., 2024b) in the AndroidWorld environment. Thus, we adopt the same
observation and action space used in AndroidWorld and use a real-time evaluation function to deter-
mine task success.

D.3.1 PROMPTS FOR USING GPT-4O AS PLANNING MODEL

In all online experiments, we employed two settings: GPT-4o as the planner, AGUVIS-7B as the
grounder, and AGUVIS-72B as both the planner and grounder. For experiments where AGUVIS-
72B served as both the planner and grounder, the prompt was straightforward: we only needed to
provide AGUVIS-72B with a single prompt at each step, and it could independently handle reasoning,
planning, and grounding. We use prompt for forcing plan to improve AGUVIS-72B’s performance
on the online experiments, as illustrated in Appendix E.2.2

In the GPT-4o + AGUVIS-7B setting, the situation was more complex. Two key challenges needed
to be addressed: making GPT-4o’s planning usable by AGUVIS-7B and determining which actions
required AGUVIS-7B for grounding. To address these challenges, we modified GPT-4o’s prompts
based on Mind2Web-Live (BrowserGym) and AndroidWorld to enable it to delegate grounding ac-
tions to AGUVIS-7B when necessary and to share its planning outputs with AGUVIS-7B. Specif-
ically, we append <|im start|>assistant<|recipient|>all\nThought:{GPT-4o
Thought}\nAction:{GPT-4o Low-level Instruction} to the end of the prompt and
therefore let AGUVIS-7B generate grounding actions based on GPT-4o’s response.

Table 12: Prompt used for the planning model in Mind2Web-Live, modified from the prompt in
(Drouin et al., 2024)

Instructions
Review the current state of the page and all other information to find the best possible
next action to accomplish your goal. Your answer will be interpreted and executed by a
program, make sure to follow the formatting instructions.

Goal: {Goal}
Observation of current step
Current URL: {URL}
History of interaction with the task: {History}
Action Space
8 different types of actions are available.

noop(wait ms: float = 1000)
Description: Do nothing, and optionally wait for the given time (in milliseconds).

send msg to user(text: str)
Description: Sends a message to the user.

scroll(delta x: float, delta y: float, relative: bool = False)
Description: Scroll horizontally and vertically. Amounts in pixels, positive for right or
down scrolling, negative for left or up scrolling. Dispatches a wheel event.

fill(element: str, value: str)
Description: Fill out a form field. It focuses the element and triggers an input event with
the entered text. It works for <input>, <textarea>, and [contenteditable] elements. The
’element’ parameter represents the semantic information of the element you want to fill.

click(element: str, button: Literal[’left’, ’middle’, ’right’] = ’left’)
Description: Click an element. The ’element’ parameter represents the semantic informa-
tion of the element you want to click.

dblclick(element: str, button: Literal[’left’, ’middle’, ’right’] = ’left’)
Continued on the next page
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Table 12 – Continued from the previous page
Instructions
Review the current state of the page and all other information to find the best possible
next action to accomplish your goal. Your answer will be interpreted and executed by a
program, make sure to follow the formatting instructions.

Description: Double click an element. The ’element’ parameter represents the semantic
information of the element you want to double click.

hover(element: str)
Description: Hover over an element. The ’element’ parameter represents the semantic
information of the element you want to hover over.

keyboard press(key: str)
Description: Press a combination of keys. Accepts the logical key names that are emit-
ted in the keyboardEvent.key property of the keyboard events: Backquote, Minus, Equal,
Backslash, Backspace, Tab, Delete, Escape, ArrowDown, End, Enter, Home, Insert, Page-
Down, PageUp, ArrowRight, ArrowUp, F1 - F12, Digit0 - Digit9, KeyA - KeyZ, etc.
You can alternatively specify a single character you’d like to produce such as ”a” or ”#”.
Following modification shortcuts are also supported: Shift, Control, Alt, Meta.

Only a single action can be provided at once. Example:
fill(’comment text area’, ’This is an example’)
Note: you are on mac so you should use Meta instead of Control for Control+C etc.

Table 13: Prompts used for the planning model in AndroidWorld, modified from the prompt in
(Rawles et al., 2024a)

Instruction
You are an agent who can operate an Android phone on behalf of a user. Based on user’s
goal/request, you may
- Answer back if the request/goal is a question (or a chat message), like user asks ”What
is my schedule for today?”.
- Complete some tasks described in the requests/goals by performing actions (step by step)
on the phone.

When given a user request, you will try to complete it step by step. At each step, you will
be given the current screenshot and a history of what you have done (in text). Based on
these pieces of information and the goal, you must choose to perform one of the action
in the following list (action description followed by the JSON format) by outputing the
action in the correct JSON format.
- If you think the task has been completed, finish the task by using the status action with
complete as goal status: ‘{”action type”: ”status”, ”goal status”: ”complete”}‘
- If you think the task is not feasible (including cases like you don’t have enough informa-
tion or can not perform some necessary actions), finish by using the ‘status‘ action with
infeasible as goal status: ‘{”action type”: ”status”, ”goal status”: ”infeasible”}‘
- Answer user’s question: ‘{”action type”: ”answer”, ”text”: ”answer text”}‘
- Click/tap on an element on the screen. Please describe the element you want to click
using natural language. ‘{”action type”: ”click”, ”target”: target element description}‘.
- Long press on an element on the screen, similar with the click action above, use the
semantic description to indicate the element you want to long press: ‘{”action type”:
”long press”, ”target”: target element description}‘.
- Type text into a text field (this action contains clicking the text field, typing in the text
and pressing the enter, so no need to click on the target field to start), use the semantic de-
scription to indicate the target text field: ‘{”action type”: ”input text”, ”text”: text input,
”target”: target element description}‘

Continued on the next page
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Table 13 – Continued from the previous page

- Press the Enter key: ‘{”action type”: ”keyboard enter”}‘
- Navigate to the home screen: ‘{”action type”: ”navigate home”}‘
- Navigate back: ‘{”action type”: ”navigate back”}‘
- Scroll the screen or a scrollable UI element in one of the four directions, use the same
semantic description as above if you want to scroll a specific UI element, leave it empty
when scroll the whole screen: ‘{”action type”: ”scroll”, ”direction”: up, down, left, right,
”element”: optional target element description}‘
- Open an app (nothing will happen if the app is not installed): ‘{”action type”:
”open app”, ”app name”: name}‘
- Wait for the screen to update: ‘{”action type”: ”wait”}‘

Guidelines
Here are some useful guidelines you need to follow:
General:
- Usually there will be multiple ways to complete a task, pick the easiest one. Also when
something does not work as expected (due to various reasons), sometimes a simple retry
can solve the problem, but if it doesn’t (you can see that from the history), SWITCH to
other solutions.
- Sometimes you may need to navigate the phone to gather information needed to com-
plete the task, for example if user asks ”what is my schedule tomorrow”, then you may
want to open the calendar app (using the ‘open app‘ action), look up information there,
answer user’s question (using the ‘answer‘ action) and finish (using the ‘status‘ action with
complete as goal status).
- For requests that are questions (or chat messages), remember to use the ‘answer‘ action
to reply to user explicitly before finish! Merely displaying the answer on the screen is
NOT sufficient (unless the goal is something like ”show me ...”).
- If the desired state is already achieved (e.g., enabling Wi-Fi when it’s already on), you
can just complete the task.
Action Related:
- Use the ‘open app‘ action whenever you want to open an app (nothing will happen if the
app is not installed), do not use the app drawer to open an app unless all other ways have
failed.
- Use the ‘input text‘ action whenever you want to type something (including password)
instead of clicking characters on the keyboard one by one. Sometimes there is some default
text in the text field you want to type in, remember to delete them before typing.
- For ‘click‘, ‘long press‘ and ‘input text‘, the target element description parameter you
choose must based on a VISIBLE element in the screenshot.
- Consider exploring the screen by using the ‘scroll‘ action with different directions to
reveal additional content.
- The direction parameter for the ‘scroll‘ action can be confusing sometimes as it’s op-
posite to swipe, for example, to view content at the bottom, the ‘scroll‘ direction should
be set to ”down”. It has been observed that you have difficulties in choosing the correct
direction, so if one does not work, try the opposite as well.
Text Related Operations:
- Normally to select certain text on the screen: (i) Enter text selection mode by long
pressing the area where the text is, then some of the words near the long press point will
be selected (highlighted with two pointers indicating the range) and usually a text selection
bar will also appear with options like ‘copy‘, ‘paste‘, ‘select all‘, etc. (ii) Select the exact
text you need. Usually the text selected from the previous step is NOT the one you want,
you need to adjust the range by dragging the two pointers. If you want to select all text in
the text field, simply click the ‘select all‘ button in the bar.
- At this point, you don’t have the ability to drag something around the screen, so in
general you can not select arbitrary text.

Continued on the next page
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Table 13 – Continued from the previous page

- To delete some text: the most traditional way is to place the cursor at the right place and
use the backspace button in the keyboard to delete the characters one by one (can long
press the backspace to accelerate if there are many to delete). Another approach is to first
select the text you want to delete, then click the backspace button in the keyboard.
- To copy some text: first select the exact text you want to copy, which usually also brings
up the text selection bar, then click the ‘copy‘ button in bar.
- To paste text into a text box, first long press the text box, then usually the text selection
bar will appear with a ‘paste‘ button in it.
- When typing into a text field, sometimes an auto-complete dropdown list will appear.
This usually indicating this is a enum field and you should try to select the best match by
clicking the corresponding one in the list.

E ANALYSIS

E.1 TRAINING ABLATION

E.1.1 TRAINING STRATEGY ABLATION

To further demonstrate the contribution of Stage 1, Stage 2, and their combination to model train-
ing, we conducted an ablation study. Specifically, we designed five experimental settings on
AGUVISQWEN2-VL and AGUVISLLAVA-OV. We further explain the meaning of each setting:

• Stage 1 → Stage 2 corresponds to the staged configuration AGUVIS used in our paper,
where Stage 1 is followed by Stage 2 sequentially.

• Stage 1 + Stage 2 represents a joint training setup, where two stages are combined into a
training process.

• w/o Stage x indicates the absence of the respective stage in the setting.

Note that for each setting, the model is fine-tuned on the corresponding task-specific dataset.

From the first two rows in Table 14, it can be observed that the differences between models trained
with Staged Training and Joint Training setups are relatively minor. However, a clear trend emerges:
models trained using the Joint Training setup perform better on GUI grounding tasks but exhibit infe-
rior performance on datasets requires planning ability such as MM-Mind2Web and AndroidControl
High-level. This trend implies grounding data in Stage 1 is more abundant, dominating the opti-
mization process and biasing the model toward grounding tasks. In contrast, the data in Stage 2,
which combines planning and grounding, is of higher quality and better aligned with the agent’s
deployment scenarios. This rationale underpins our decision to position Stage 2 later in the training
sequence.

Moreover, it is observed that compared to AGUVISQWEN2-VL trained through both Stage 1 and Stage
2, the model trained with only Stage 2 data maintains similar performance on MM-Mind2Web and
AndroidControl but exhibits a notable decline in GUI grounding performance on ScreenSpot. This
suggests that the stability on Mind2Web and AndroidControl can be attributed to Qwen2VL’s pre-
training on natural image grounding. However, the diverse image and domain requirements of the
ScreenSpot GUI grounding test set highlight the necessity of extensive and varied grounding training
from Stage 1. This training is essential for improving the grounding performance required for a
cross-platform GUI agent model.

To verify this analysis, we conduct the same ablation study on the LLaVA model, as shown in
Table 15. From the results, we can see that the original LLaVA did not undergo extensive natural
image grounding training during the training process, making it insufficient for LLaVA to excel
when only Stage 1 or Stage 2 is conducted. When both Stage 1 and Stage 2 are performed, LLaVA
can be significantly improved, even surpassing previous SOTA results. This validates the above
analysis and further demonstrates that our method is model-agnostic and universally applicable to
popular VLMs like Qwen2-VL and LLaVA.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 14: Ablation study of AGUVISQWEN2-VL on training strategy.

Settings ScreenSpot Multimodal-Mind2Web AndroidControl
Cross-Task Cross-Website Cross-Domain High-Level Low-Level

Stage 1 → 2 84.4 58.5 55.4 54.8 61.5 80.5
Stage 1 + 2 85.0 56.1 53.1 55.6 59.2 80.9
w/o Stage 2 81.8 50.9 45.2 45.3 58.0 75.6
w/o Stage 1 77.4 59.7 55.3 55.8 58.8 79.8
w/o Stage 1 & 2 55.3 50.9 44.9 47.7 59.1 59.2

Table 15: Ablation study of AGUVISLLAVA-OV on training strategy.

Settings ScreenSpot Multimodal-Mind2Web AndroidControl
Cross-Task Cross-Website Cross-Domain High-Level Low-Level

Stage 1 → 2 81.2 55.3 50.0 50.8 60.7 82.4
w/o Stage 2 70.0 43.4 39.0 40.7 54.9 65.6
w/o Stage 1 71.3 42.5 40.3 42.8 61.4 80.5
w/o Stage 1 & 2 3.8 33.8 30.5 32.4 50.4 50.0

E.1.2 DATA STRATEGY ABLATION

To investigate the impact of different device domain datasets within a unified action space, we de-
signed three settings on the MM-Mind2Web dataset: (1) training with the complete dataset compris-
ing both Web and Mobile data, (2) training using only the Web data, and (3) fine-tuning exclusively
on the MM-Mind2Web dataset. All three experiments include fine-tuning on the MM-Mind2Web
dataset.

Table 16: Ablation Study of The Impact of Mobile Data on MM-Mind2Web

Model Training Data MM-Mind2Web
Cross-Task Cross-Website Cross-Domain

AGUVISQWEN2-VL

Web + Mobile (Stage 2 Equivalent) 58.5 55.4 54.8
Web Only 53.1 50.3 52.2
Mind2Web Only 50.9 44.9 47.7

AGUVISLLAVA-OV

Web + Mobile (Stage 2 Equivalent) 55.3 50.0 50.8
Web Only 44.9 43.5 42.1
Mind2Web Only 43.4 39.0 40.7

Table 17: Ablation Study of the Impact of Inner Monologue

AGUVIS ScreenSpot Multimodal-Mind2Web AndroidControl
Cross-Task Cross-Website Cross-Domain High-Level Low-Level

AGUVIS 84.4 58.5 55.4 54.8 61.5 80.5
AGUVIS w/o IM 79.3 55.4 53.7 54.9 60.3 69.1

The experimental results, presented in the Table 16, demonstrate that training AGUVIS with both
Web and Mobile data consistently outperforms the setting trained exclusively on MM-Mind2Web.
This performance gain underscores the contribution of Mobile data to enhancing cross-device do-
main generalization in the Web domain, validating the effectiveness of our cross-platform data.

In addition, we conducted ablation study on the role of incorporating inner monologue (IM) in train-
ing. The result shown in Table 17 demonstrated clear performance gain from inner monologue. This
gain can be attributed to two key factors: the use of inner monologue enables the model to elicit
reasoning about the current step while also serving as context to facilitate more effective planning
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for subsequent steps. Additionally, incorporating low-level instructions from the training data im-
proves the accuracy of the model’s action execution, as demonstrated in both the Screenspot and
AndroidControl low-level tasks.

E.2 PLANNING ANALYSIS

E.2.1 PROMPTS FOR SELF-PLANNING AND ENFORCED PLANNING MODE.

In Appendix C.1, we present the training data schema for Stage 1 and Stage 2. We use the special
token <|recipient|> along with os or all to control whether the message content is an inner
monologue or a pyautogui action command. Thanks to this design, we can use <|recipient|>
during the inference phase to control the content generated by the model.

In the Enforced Plan Setting, we employ the <|recipient|>all\nThought prompt to compel
the model to generate a planning phase following this. While in the self-plan setting, we do not add
any word after <|recipient|>, so the model can choose to generate os to directly produce a
pyautogui command, or generate all to first create natural language reasoning and then generate a
pyautogui command.

Prompt Template For Self-plan

<|im_start|>system
You are a GUI agent. You are given a task and a screenshot of the
screen. You need to perform a series of pyautogui actions to
complete the task.<|im_end|>
<|im_start|>user
<|vision_start|><|image_pad|><|vision_end|>Please generate the next
move according to the ui screenshot, instruction and previous
actions.

Instruction: {goal}

Previous actions: {previous_actions}
<|im_end|>
<|im_start|>assistant<|recipient|>

Prompt Template For Enforced Plan

<|im_start|>system
You are a GUI agent. You are given a task and a screenshot of the
screen. You need to perform a series of pyautogui actions to
complete the task.<|im_end|>
<|im_start|>user
<|vision_start|><|image_pad|><|vision_end|>Please generate the next
move according to the ui screenshot, instruction and previous
actions.

Instruction: {overall_goal}

Previous actions: {previous_actions}
<|im_end|>
<|im_start|>assistant<|recipient|>all
Thought:
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E.2.2 PLANNING BOUNUS EXAMPLES

Task Instruction: add a new file

pyautogui.click(x=0.3997, y=0.0148) 

Thought: To add a new file, I need to select the 'New' option 
from the context menu. This will likely open a dialog or prompt 
to create a new file, aligning with the goal of adding a new file 
to the directory.

Action: Click on the 'New' option in the context menu.

pyautogui.click(x=0.6836, y=0.2535) 

Task Instruction: send current page

pyautogui.click(x=0.9792, y=0.8046) 

Thought: To share the current page, I need to find and click the 
share icon, which is typically represented by a network or link 
symbol. This icon is usually located in the browser's toolbar or 
menu.

Action: Click the share icon in the browser to share the current 
page.

pyautogui.click(x=0.9792, y=0.876) 

Task Instruction: go to personal homepage

pyautogui.click(x=0.0219, y=0.0333) 

Thought: To reach the personal homepage, I need to interact 
with the user profile element, which is typically represented by 
an avatar or username. This element is usually clickable and 
leads to the user's profile page.

Action: Click on the user profile icon or username at the top 
right corner to go to the personal homepage.

pyautogui.click(x=0.9615, y=0.0326) 

Task Instruction: rate this product with four stars

pyautogui.click(x=0.2271, y=0.2926) 

Thought: To achieve the goal of rating the product with four 
stars, I need to click on the fourth star in the rating section. 
This will ensure the product is rated with four stars, aligning 
with the task requirement.

Action: Click on the fourth star in the rating section to rate the 
product with four stars.

pyautogui.click(x=0.2445, y=0.293) 

Task Instruction: switch to song lyric

pyautogui.click(x=0.5, y=0.9252) 

Thought: To switch to song lyrics, I need to find and click on 
the lyrics button, which is typically represented by a text or chat 
icon. This icon is usually located at the bottom of the screen 
among other playback controls.

Action: Click on the lyrics icon at the bottom of the screen to 
switch to song lyrics.

pyautogui.click(x=0.2352, y=0.9267) 

Task Instruction: change dark mode options

pyautogui.click(x=0.7306, y=0.3575) 

Thought: To change the dark mode options, I need to select the 
'More Dark mode options' option. This will likely lead to 
additional settings related to dark mode.

Action: Click on 'More Dark mode options' to explore further 
settings.

pyautogui.click(x=0.4991, y=0.6742) 

Figure 6: Self-plan examples on different environments.
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E.3 AGUVIS TRAJECTORIES EXAMPLES ON ONLINE EVALUATION

E.3.1 MIND2WEB-LIVE CASE: AGUVIS-72B AS PLANNER AND GROUNDER

Thought: To find the list of Men's 
Blazers, I need to navigate to the 'MEN' 
section first. The 'MEN' tab is visible in 
the navigation bar, which is the logical 
next step to access men's clothing 
categories.



Low-level instruction: Click on the 
'MEN' tab in the navigation bar.

Action: pyautogui.click(x=0.456, y=0.049)

Task

Planner

Show me the list of Men's Blazers, Black, Size M on uniqlo.

Aguvis72B&

Step 1

Thought: To filter the list of men's 
blazers to show only black options, I 
need to select the 'BLACK' color option 
from the color filter menu.



Low-level instruction: Click on the 
'BLACK' color option to filter the blazers 
by black color.

Action: pyautogui.click(x=0.303, y=0.324)

Step 6

Thought: To find the specific black, size 
M blazers, I need to apply the 
appropriate filters. The 'Color' filter is 
crucial for narrowing down the options 
to black blazers.



Low-level instruction: Click on the 
'Color' filter to select black.

Action: pyautogui.click(x=0.478, y=0.351)

Step 5

Thought: I need to select the 'Blazers' 
option under 'MEN / Outerwear' to 
proceed with finding men's blazers in 
black, size M.



Low-level instruction: Click on the 
'Blazers' option under 'MEN / Outerwear' 
to view the list of men's blazers.

Action: pyautogui.click(x=0.15, y=0.344)

Step 4

**DONE**

Step 9

Thought: To achieve the goal of 
filtering for men's black blazers in size 
M, I need to select the 'M' size option 
from the list. This will update the search 
results to show only the blazers 
available in size M.



Low-level instruction: Click on the 
checkbox next to size 'M' to filter the 
results for size M blazers.

Action: pyautogui.click(x=0.273, y=0.388)

Step 8

Thought: I need to apply the size filter 
to narrow down the results to size M. 
The next logical step is to interact with 
the size filter option.



Low-level instruction: Click on the 
'Size' filter to select size M.

Action: pyautogui.click(x=0.401, y=0.353)

Step 7

Thought: To find men's blazers, I need 
to use the search bar to input the 
keyword 'blazers'. This will help me 
locate the specific category of clothing 
I'm interested in.



Low-level instruction: Type 'blazers' 
into the search bar to find men's blazers.

Action:

pyautogui.click(x=0.203, y=0.828)

pyautogui.write(message='blazers')

Grounder

Step 3

Thought: To find the list of Men's 
Blazers, I need to navigate to the 
relevant section. The search bar is 
available, which can be used to directly 
search for 'blazers'



Low-level instruction: Click on the 
search bar to start typing 'blazers'.

Action: pyautogui.click(x=0.501, y=0.92)

Step 2

Figure 7: Example of AGUVIS-72B as planner and grounder executing Mind2Web-Live task. Due
to space limitations, we present here the trajectory generated guided by Thought.
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E.3.2 MIND2WEB-LIVE CASE: GPT-4O AS PLANNER AND AGUVIS-7B AS GROUNDER

Thought: To find a walkthrough guide 
for Assassin's Creed Valhalla on IGN, I 
should use the search functionality. The 
search icon is visible on the left sidebar. 
Clicking on it should allow me to enter 
the search query.



Low-level instruction: 

click('search icon')

Action: pyautogui.click(x=0.033, y=0.4014)

Task

Planner

Find a walkthrough guide for Assassin's Creed Valhalla on ign

Aguvis7BGPT-4o

Step 1

Thought: To find the walkthrough 
guide, I should look for a section or link 
that specifically mentions guides or 
walkthroughs. Since I don't see any 
relevant links or sections immediately, I 
should scroll further down the page to 
see if more content is revealed.



Low-level instruction: scroll(0, 500)

Action: /

Step 6

Thought: I am currently on the 
Assassin's Creed Valhalla page on IGN, 
and I have clicked on the "Overview" tab. 
To find the walkthrough guide, I should 
look for a section or link that specifically 
mentions "walkthrough" or "guide."



Low-level instruction: scroll(0, 300)

Action: /

Step 5

Thought: To find a walkthrough guide, I 
should look for relevant sections or links 
on this page. The page has tabs like 
Overview, Playlists, and Reviews. The 
walkthrough guide is likely to be under 
one of these tabs, possibly the Overview 
or Playlists tab.



Low-level instruction: click('Overview 
tab')

Action: pyautogui.click(x=0.2115, y=0.7222)

Step 4

**DONE**

Step 8

Thought: There is also a "Walkthrough" 
link under the "Top Guide Sections" on 
the right side. Clicking the 
"Walkthrough" link should take me 
directly to the walkthrough guide.



Low-level instruction: 
click('Walkthrough')

Action: pyautogui.click(x=0.5852, y=0.7681)

Step 7

Thought: The search results for 
"Assassin's Creed Valhalla walkthrough" 
are displayed. The first result is 
"Assassin's Creed Valhalla." This is likely 
to contain the walkthrough guide we are 
looking for. I should click on this result 
to proceed.



Low-level instruction: click('Assassin\'s 
Creed Valhalla')

Action: pyautogui.click(x=0.4991, y=0.4847)

Grounder

Step 3

Thought: The search bar is now visible. 
To find a walkthrough guide for 
Assassin's Creed Valhalla, I need to enter 
the search query in the search bar.



Low-level instruction:

fill('search input field', 'Assassin\'s Creed 
Valhalla walkthrough')

Action: 

pyautogui.click(x=0.4991, y=0.3417)

pyautogui.write(text="Assassin's Creed 
Valhalla walkthrough")

Step 2

Figure 8: Example of GPT-4o as planner and AGUVIS-7B as grounder executing Mind2Web-Live
task.
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E.3.3 ANDROIDWORLD CASE: AGUVIS-72B AS PLANNER AND GROUNDER

Thought: To achieve the goal of 
managing expenses in Pro Expense, I 
need to open the app first. The list of 
apps includes Pro Expense, which is 
relevant to the task at hand.



Low-level instruction: Open the Pro 
Expense app using mobile.open_app.

Action:

mobile.open_app(app_name='Pro Expense')

Task

Planner

Delete all but one of any expenses in pro expense that are exact duplicates, 
ensuring at least one instance of each unique expense remains.

Aguvis72B&

Step 1

Thought: To achieve the goal of 
deleting duplicate expenses, I need to 
access the Expense Logs to view all 
expenses and identify duplicates. The 
Expense Logs option is visible in the 
menu.



Low-level instruction: Click on 
'Expense Logs' to view the list of 
expenses.

Action: pyautogui.click(x=0.272, y=0.317)

Grounder

Step 3

Thought: To achieve the goal of 
deleting duplicate expenses, I need to 
access the list of all expenses. The 
current screen shows recent expenses, 
but I need to navigate to a section where 
I can view and manage all expenses. The 
menu icon at the top left is likely the 
gateway to accessing more options, 
including the full list of expenses.



Low-level instruction: Click on the 
menu icon at the top left to access more 
options.

Action: pyautogui.click(x=0.501, y=0.92)

Step 2

Thought: I need to delete one of the 
duplicate 'Public Transit' entries to 
ensure only one unique entry remains. 
This aligns with the goal of removing 
duplicate expenses.



Low-level instruction: Click on one of 
the 'Public Transit' entries to delete it.

Action: pyautogui.click(x=0.545, y=0.614)

Step 4

Step 7

Thought: I need to confirm the deletion 
of the duplicate 'Public Transit' entry to 
ensure only one unique entry remains.



Low-level instruction: Click on the 
'CONFIRM' button to delete the selected 
duplicate entry.

Action: pyautogui.click(x=0.532, y=0.923)

Step 6

Thought: I need to delete duplicate 
entries, ensuring at least one unique 
entry remains. The current focus is on 
the 'Public Transit' entry, which seems to 
be a duplicate. I should delete this entry 
to meet the goal.



Low-level instruction: Click on the 
delete icon next to the 'Public Transit' 
entry to remove it.

Action: pyautogui.click(x=0.909, y=0.693)

Step 5

**DONE**

Figure 9: Example of AGUVIS-72B as planner and grounder executing AndroidWorld task. Due to
space limitations, we present here the trajectory generated guided by Thought.
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E.3.4 ANDROIDWORLD CASE: GPT-4O AS PLANNER AND AGUVIS-7B AS GROUNDER

Thought: Open the Simple SMS 
Messenger app to send a text message.



Low-level instruction: {"action_type": 
"open_app", "app_name": "Simple SMS 
Messenger"}

Action: /

Step 1

Thought: Input the phone number into 
the "Add Contact or Number..." field.



Low-level instruction: {"action_type": 
"input_text", "text": "+16597910719", 
"target": "Add Contact or Number..."}

Action: 

pyautogui.click(x=0.4991, y=0.1504)

pyautogui.write(message=’+16597910719’)

Step 3

Thought: Start a new conversation to 
send the text message.



Low-level instruction: {"action_type": 
"click", "target": "Start a conversation"}

Action: pyautogui.click(x=0.5, y=0.1996)

Step 2

Thought: Tap the checkmark to confirm 
the phone number and proceed to the 
message input screen.



Low-level instruction: {"action_type": 
"click", "target": "checkmark icon"}

Action: pyautogui.click(x=0.9407, y=0.1483)

Step 4

Step 7

Thought: Send the message by tapping 
the send button.



Low-level instruction: {"action_type": 
"click", "target": "send button with SMS 
icon"}

Action: pyautogui.click(x=0.9306, y=0.6025)

Step 6

Thought: Input the message "Beauty is 
in the eye of the beholder." into the 
message field.



Low-level instruction: {"action_type": 
"input_text", "text": "Beauty is in the eye 
of the beholder.", "target": "Type a 
message..."}

Action:

pyautogui.click(x=0.4991, y=0.6075)

pyautogui.write(‘Beauty is in the eye of the 
beholder.’)

Step 5

**DONE**

Task

Planner

Send a text message using Simple SMS Messenger to +16597910719 with 
message: Beauty is in the eye of the beholder.

Aguvis7BGPT-4o Grounder

Figure 10: Example of GPT-4o as planner and AGUVIS-7B as grounder executing AndroidWorld
task.
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E.4 AGUVIS ON REAL-WORLD SENARIOS GENERALIZATION

Thought: To proceed with finding a flight, I need to dismiss the privacy pop-up to 
access the search functionality.

Low-level instruction: Click 'No, thanks' to dismiss the privacy pop-up.

Action: pyautogui.click(x=0.498, y=0.603)

Thought: To proceed with contacting support, I need to close this overlay to access the 
main page where the 'Contact Us' or 'Support' link is likely located.

Low-level instruction: Click the 'X' button to close the cookie consent overlay.

Action: pyautogui.click(x=0.704, y=0.093)

Figure 11: Example of AGUVIS Closing Pop-ups in Real-world Scenarios
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